Skip to content

Goldstein, Steve A. N., MD,PhD

Home E Faculty E Goldstein, Steve A. N., MD,PhD

Our research seeks to understand how ion channels operate in health and illness. Ion channels are membrane proteins in all cells that catalyze the selective passage of ions across membranes and, like enzymes, show exquisite specificity and tight regulation. As a class, ion channels orchestrate the electrical activity that allows operation of the heart, nervous system and skeletal muscles and are just as important in non-excitable cells like circulating T cells and sperm. Less sensational but equally important, ion channels mediate cellular fluid and electrolyte homeostasis. Remarkably, fundamental questions remain to be answered. How do ion channels open and close? What is their architecture? How do mutations produce cardiac arrhythmia, hypertension, seizures, or interfere with immune function? How do drugs act to produce beneficial outcomes (~20% of our current pharmacopeia targets ion channels) or to yield undesirable side effects? Our laboratory uses macroscopic and single molecule electrophysiology and spectroscopy, molecular genetics, high-throughput and structural methods to improve human health and wellness.