Skip to content

Dr. Lisa Flanagan is a member of the Department of Neurology at the University of California, Irvine, with joint appointments in Biomedical Engineering and Anatomy and Neurobiology. Dr. Flanagan’s research program combines the fields of neural cell biology and bioengineering to address issues critical to the successful transplantation of neural stem cells (NSCs) for the repair of injured or diseased central nervous system (CNS) tissue. As such, her lab is investigating factors that affect the differentiation of NSCs into the three CNS lineages (neurons, astrocytes or oligodendrocytes) and exploring means to direct fate decisions of transplanted or endogenous cells for optimal repair and regeneration. Dr. Flanagan’s lab has taken two complementary approaches to these problems. In one, they are developing novel non-invasive methods to identify the fate potential of undifferentiated stem cells with the goal of isolating cells biased to a particular fate. In the other, they investigate the role of extracellular matrix cues in regulating the behavior of NSCs in order to generate instructive three-dimensional matrices for NSC transplantation. Their goal is to achieve greater control over the differentiation of transplanted stem cells to unravel the contributions of each cell type to effective repair and potentially maximize functional recovery. These studies have clinical applications for the treatment of stroke, Alzheimer’s disease, and spinal cord injury.